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1.0 INTRODUCTION AND SUMMARY

One of the most difficult problems facing electromagnetics is the analysis

of the effects of natural terrain on radiated fields. While some progress has 0

definitely been made on developing a good theory for scattering from surfaces

having a well defined continuous profile, such surfaces are not, in general,

representative of natural terrain. This is because most natural terrain has 0

some form of cover superimposed on the continuous profile. This cover is

usually some form of vegetation, snow, ice, or even rubble such as gravel or

dead vegetation. This cover represents a significant difficulty to the analyst

because it places yet another scattering medium upon one which is complex by

itself. Fortunately, the physical nature of some types of cover such as vege-

tation render it amenable to a statistical characterization. Thus, to analyze S

the effects of the foliage on electromagnetic fields, we must be able to de-

scribe the scattering characteristics of a discretely random media (foliage)

superimposed upon a continuously varying random boundary (the underlying sur- P

face). This is the problem which we are attempting to resolve, and this report

is a brief summary of essentially one year's work.

In Chapter 2 we discuss the relevant parameters of typical foliage cover- P

ings and use these results to develop a rationale for the problem. Our approach

essentially includes a first order interaction between the foliage and the rough

surface and we indicate how the results can be used to determine when our first

order interaction approximation becomes inadequate. In order to account

properly for the interaction between the foliage and the surface we need an

approach to analyze the scattering from the foliage which is potentially capa- a

ble of yielding more than just the first two moments of the scattered field.

For this reason we choose to use the method of smoothing but in a manner which

has (to the author's knowledge) never been tried before. We discuss the

P



problems we have initially encountered with this approach and their relation-

ship to previous analytical efforts. We then note that our future efforts

will be directed toward developing suitable approximations but with the caveat

that we understand the implications of the simplifications particularly in

regard to the inclusion of multiple scattering.

In Chapter 3 we discuss our continuing efforts to develop a tractable

theory for scattering from the rough surface which includes multiple scatter-

ing. In particular, we concentrate our attention on the previous results we

obtained with the method of smoothing. We show that although the integrations

resulting from the application or this method are very difficult to perform in

general, they do appear to simplify considerably in certain asymptotic limits.

Furthermore, we illustrate how these asymptotics can be used to simplify the

integrations. We also discuss our efforts to understand the convergence of

the method of smoothing as it applies to the rough surface scattering problem.

Unfortunately, we have been unable to determine the range of surface parameters

for which the method converges. However, we do show that even the first order .-

smoothing approximation does sum an infinite number ol interactions on the sur-

face under certain simplifying conditions. Future wcrk on this problem will

be directed toward numerical evaluations of the asymptotic approximations for - -

the above noted integrations.

2.0 FOLIAGE COVERAGE ANALYSIS

2.1 Background

The primary thrust of this research effort is to provide a tractable theory

for estimating the effects of a vegetation cover upon scattering from arbitrar-

ily roughened terrain. Since the eventual goal of our work is to aid in the

estimation and elimination of both incoherent and coherent clutter in radar

systems, our theory must be sufficiently general to account for various types

2
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of vegetation cover ranging from rather short grass to dense, cultivated

forests. Needless to say, this is a very difficult problem not only from

the electromagnetic analysis point of view but also from the perspective of 0

how one translates the rather crude biophysical characterizations of foliageS

into meaningful scattering parameters. About the only thing we have in our

favor is that the fractional volume occupied by foliage is generally less 0

than 1% with the exceptions being no more than 5% for well maintained forested

areas in eastern Europe [Brown & Curry, 1980]. The primary implication of this

fact is that we can use a weak multiple scattering theory for the average or S

coherent field in the foliage [Brown & Curry, 1980]. This simplification

greatly reduces the complexity of the foliage-only problem from the electro-

magnetic point of view and has, in fact, formed the basis of all approximate .

theories to date.

Fung [19821 has recently published a recipe oriented review of previous

efforts to model the scattering from foliage. Unfortunately, Fung failed to

emphasize a very important fundamental dichotomy in these approximate theories;

the great majority of these approximate theories are derived from continuous

random media theory while only a relatively few are based on the truly dis- S

crete nature of the random media. The primary difficulty with trying to use

continuous randon media theory for truly discrete media is that one is forced

into defining a number of equivalent continuous characteristics for the discrete S

media. Since these equivalent continuous characteristics do not physically

exist, there is no rigorous way to measure them and, hence, there is no way

to verify the theory experimentally. What generally happens is that one

ends up with a parameter laden model and the parameters are chosen to fit the

The problem is further compounded by the fact that even this crude biophysical
data is seldom available.
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model to selected scattering data. Unfortunately, this approach provides us

with neither confidence in nor guidance as to how the model can be extrapo-

lated to other frequencies, polarizations, environments, etc. Of course, if

one had a very large data base available to corroborate the model then it

certainly could be used; however, if such a large data base is available, then

why not simply develop an empirical model in the first place? In summary, we

do not plan to use nor do we intend to develop any theories based on wave propa-

gation and scattering in equivalent continuous random media. Our principal rea-

son for this decision is that in such an approach we lose the ability to corre-

late the physical properties of the foliage with the actual parameters required

by the model or theory. We feel very strongly that such a capability is vitally

important to understanding a problem of this complexity.

Lang [1981] and Lang & Sidhu [1983] have recently done an excellent job

of estimating the scattering properties of an infinite half-space of foliage

and a layer of foliage on a planar ground, respectively, using discrete ran-

corn media theory. For the half-space problem, Lang [1981] uses the Foldy-

Twersky formalism to determine the wavenumber for the average or coherent field

and the distorted Born approximation to find the incoherent scattered power.

As he uses it, the distorted Born approximation assumes that the individual

particles scatter independently of each other but in an effective background

medium whose characteristics are determined by the propagation characteristics

of the coherent field. Although the distorted Born approximation is a single

scatter based theory, it does account for the attenuation of the coherent field

before and after it strikes a particle. The same basic concepts are applied

to the foliage slab on a planar ground problem although the analysis is some-

what more involved because of the presence of three media. In particular

Lang & Sidhu [1983] treat the propagation of the mean field via a one dimensional

4



differential equation which they solve approximately via a two variable per-

turbation technique based upon the small fractional volume of the foliage.

This approach allows them to clearly identify the various scattering mechanisms

which are important when the fractional volume is small. This is a very power-

ful approach and leads to a great deal of insight into the problem. Unfortu-

nately, it is not obvious how this rigorous approach could be applied to a

situation where the ground surface is randomly roughened. However, Lang's

work does provide us with an excellent check case when the variance of the sur-

face roughness shrinks to zero.

2.2 Approach

There are a number of a priori approximate techniques that could be con-

sidered as potential candidates for analyzing the effects of a foliage layer

on a randomly rough surface. For example, we could simply add the scatter-

ing cross sections of the foliage layer and the rough surface. Clearly, this

result will be valid only when one of the cross sections is significantly

larger than the other. We might also consider adding the cross section of the

foliage to a reduced cross section for the ground; the reduction factor could

be interpreted as somehow accounting for the attenuating effects of the foliage

upon the field that actually reaches the ground. The fundamental difficulties

with a priori approaches of this type are that (a) they ignore the interaction

of coherent and incoherent fields and (b) they provide absolutely no indica-

tion as to when they become inaccurate. For these reasons, we have selected

a more direct approximate approach to the problem which we feel will be suit-

able for a foliage covering in that it is both tractable and has the potential

for indicating when it begins to fail.

The dominant effects of the foliage upon the scattering by the rough sur-

face are twofold; first, the foliage alters the field incident upon the surface

5
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and, second, it changes the field scattered by the rough surface. Similarly,

the surface gives rise to a secondary field incident upon the foliage from

below. This simple reasoning suggests that we can approximately account for

the foliage by using only the suspected dominant interactions between the sur-

face and the foliage. That is, we first consider a layer of foliage in free
-

space which is illuminated by the source or incident fLeld E. The foliage

gives rise to a scattered field which we denote by E ; thus, the total field
sf

below the foliage layer is E. + E(i We take this field to be the field

incident upon the rough surface which, in turn, produces a scattered field

E above the surface. This field now acts as an incident field on the
S

foliage layer which, subsequently, gives rise to a scattered field E(2) above
sf

the foliage layer. Clearly, we could continue this process indefinitely to

find Lhat the net scattered field due to the foliage covered rough surface is

given by

Es E + (2.1)Es f s

j=i j=i

However, truncating the series in (2.1) to the terms we expect to be dominant

in the process, we obtain

E+ ( + (i) (2.2)
s f sf ss

To be more explicit, let us insert in the argument of each field in (2.2) the

effective incident field for that particular scattered field, i.e.,

E E (E +E (E + E (E.+E() (2.3)
sS 5 1 5 5 5 s

fs s f

This expression shows more clearly that (a) the first order field scattered

from the foliage (E')) is due to the free space incident field (E)
s f 1:j

6. -



yield

Cqf p Vo qi po)d ql dipo P(CVI

S 0 0 1 0

Now, both p and p also contain an explicit dependence upon the surface

2 -
height correlation function <C >p(Ar and its spatial derivatives. Thus,

-+ -> -).

all of the terms in (3.3) depend only on Art  r -r , so converting to

this difference coordinate yields

LPGf = exp(-jk i r) t W'( ,
l -

4
A r t )W (

.
l ' ° ;A r t ) e x p fj ( k - k i ) ° ]

t 1 JJf z

exp(jk i  Ar t)d~d dAr t  (3.4)

t

It is also convenient to convert to a difference ini and o That is,

we let Ar = C- and (3.4) becomes
0

rf t)  + ) x[J(k-ki )

LPCf exp(-jk i *r t) (ACA (A r 1 0
fff z

exp(jk i  Art )d 0dArdArt (3.5)

t

We can now do the C -integration to yield
0

LP~fi =exp(-jk i ".r) (A ,Art) p (Ac,,Ak;Ar t  "-j "Art dAdAr (3.6)

where Ak = k-k. and

z

p(LA,, Ak;Ar P (1A1+rov,;Ar) ex j(k-k. )r, d

i 0

f z
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smoothing result which do not include the fi factor but if we can do the

integrations and averages with fi included then we can certainly do them

with fi absent.

To illustrate the asymptotics, we will consider first the N=0 term in

detail and then briefly outline the extension to the case where N >0 . In

terms of its functional dependence we can write

LPGf = r -r X C expfj(k-k. )lo]exp(-jk. "r )>dr (3.3)
f 1tit0q1PO z 0 t o 0 o

where

-

ag(cl- or t r )

(- 1ro )  Aq 2

Sr exp(-Jklrl-r2+Z

S 0 rt-rt 2

l 1 ( o 0 -'

0=0

q DqP o = P 0-"'ql 0q P "

• .,
r x x + y y r =xx +y y

tt 0 0 0

and q and p signify either x1  or yl and x or yo respectively.

Also, Aq stands for either Ax = x -x , Ay = Yl-Yo , or A '=1 -

The k i  is the x and y parts of the incident wavenumber vector, k is

t z
the z part, and k is arbitrary; for the coherent scattered field we sut

k = -k The averaging operation in (3.3) requires multiplying the intvgrand

z
by the joint density function p(( 1,'.,q, r) and thie inttgrat ing ovtr

1 q aPo
,l,' o, ql , and tPo The slope in tegrat ions (-;un ht, ,, 1 I it , " ' -vm o I ical lIV

q "
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we know that an iterative solution will converge in the high frequency limit

provided a sufficient number of iterations are taken. We also know that when

the surface slopes are moderate to large, the number of required iterations

may be large [Ch. 5 of Brown, 1984a]. Since there is no reason to expect

that the convergence rate of the transformed integral equation should be dif-

ferent than the convergence rate for the coordinate space equation, we do not

feel that iteration is a fruitful approach. Thus, in regard to the integral

equations produced by the stochastic Fourier transform approach, we have been

unable to develop a suitable asymptotic technique for solving these equations.

While we do not plan to abandon our search for some form of asymptotic solu-

tion of the integral equations resulting from the stochastic Fourier transform

approach, we will not be putting as much effort into this problem as previously.

One of the primary reasons for this decision is that the method of smoothing

approach appears to be much more amenable to asymptotic solution.

The method of smoothing as it applies to the rough surface scattering prob-

lem is developed in detail in Chapter 4 of [Brown, 1984a]. The results of our

attempts to apply asymptotic techniques to the method of smoothing are most

encouraging but incomplete at this time. Consequently, we shall only broadly

outline the rationale of our method of attack and illustrate its merits. The

key to evaluating the terms in the method of smoothing solution rests with our

ability to evaluate terms like

LPG[LG]N fi (N 0,1,..)

where L is an integral over the x and y source coordinates, P is the averag-

ing operator, G comprises products of the gradient of the free space Green's

function evaluated on the surface with x and y components of the surface slope,

i
and f is the single scattering result (see Ch. 4 of [Brown, 1984a] for a

detailed explanation of these terms). There are some terms in the method of

18
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3.2 Asymptotic Approximations

In this section we shall briefly summarize our attempts to apply asymptotic

approximations to the rough surface formulations we have previously developed.

We have spent a great deal of time attempting to apply asymptotics to simplify-

ing the integral equations we obtained with the stochastic Fourier transform p

approach, i.e., either the integral equation of the first kind for the transform

of the current [Brown, 1981] or the integral equation of the second kind for the

average scattered field [Brown, 1984a]. Although we have not been successful in

our attempts, we think we know the reason why. The only obvious way to simplify

the integral equations we obtained using the stochastic Fourier transform approach

was to apply the asymptotics to the kernel of the integral equation. However,

when we did this, we did not always obtain self consistent results. The reason

for this anomally is that it is not always correct to attribute the asymptotic

behavior of an integral equation entirely to the asymptotic behavior of the -,

kernel. That is, the unknown function in the integral equation may also asymp-

totically approach a limiting form which is just as important as the kernel

and ignoring this behavior can lead to erroneous results. While this under-

standing is clearly worthwhile, the fact remains that we have been unsuccess-

ful in our attempts to asymptotically solve the integral equations resulting

from the stochastic Fourier transform approach.

We have also studied solving the integral equation of the second kind for

the average scattered field [Ch. 3 of Brown, 1984a] by means of iteration.

There is, however, a distinct uncertainty in an iterative approach due to the

fact that we seldom know very much about the convergence properties of the

iterative solution. In general, it is very difficult to determine the conver-

gence range for a given integral equation. However, from our previous work with

the magnetic fl 'Id integral equation in coordinate space [Ch. 5 of Brown, 1984al,

17
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function as follows;

exp(-jko(x-x)2 + (Y-yo2 + (z-z) 2G(IL i_ 1)  =o(3.i)1:]

47 (x-x)2 + (y-y) + (z-z

The average scalar field is obtained by simply averaging (3.1) over all possible

realizations of the random variable z , i.e.,
o

G(IR-Roi) =f G(JR-Rol) p (zo) dzo (3.2)

Equation (3.2) clearly shows the fundamental difficulty. That is, because of

the form of G(lR-Ro1) , it is very hard to accomplish the integration in (3.2)

by any means other than pure numerical integration. If we look at the integral

on the rhs of (3.2), we see that this problem is identical to finding the field

everywhere in space radiated by a line source locat, at (x,y) and having a

current distribution given by p(zo ) In the line source problem, we usually
0

take the point of observation (R) sufficiently far removed from the source

point (R ) that we can invoke far field approximations thereby simplifying

00(3.2) to the Fourier transform of the "current distribution" p(zo) .In the '-

problems we are dealing with, we cannot invoke such a simplification because

we need the field everywhere and particularly near to the source point, for it

is the very close points which interact most strongly with the "source." Thus,

we see that one of the major difficulties we face is that we cannot invoke

conventional asymptotics to simplify the required intergration. In fact, the

only meaningful asymptotics we can use in the surface scattering problem are

those resulting from limiting forms for the support of p(zo) , i.e., large
0

support resulting from large variance and/or small support resulting from small

variance, respectively, for z.

16



the development of a technique which we called the stochastic Fourier trans-

form approach [Brown, 1981; Brown, 1984a]. This research gave us the ability

to generalize a number of results which previously had been proven only within 0

the confines of the single scattering approximation [Brown, 1982; Brown, 1983].

Furthermore, the stochastic Fourier transform approach led us to the develop-

ment of a finite dimensional integral equation of the second kind for the aver-

age field scattered by a randomly rough, perfectly conducting surface and also

showed how higher moments of the scattered field would be subsequently deter-

mined [Brown, 1984a]. While this work clearly showed that there were no funda-

mental difficulties in formally determining the moments of the scattered field,

it did not fully satisfy our second goal which was to provide a computationally

tractable solution. To achieve this goal we looked to some of the more classi-

cal techniques in random propagation and achieved significant success with the

method of smoothing [Brown, 1984a]. The method of smoothing yielded a series

expression for the average scattered field in terms of successively higher orders

of interactions or multiple scatterings on the surface. Thus, the usefulness of

the method of smoothing result hinged largely on the computability of the indivi-

dual terms in the series and the convergence of the interaction series. Our

present efforts have been directed toward answering these questions.

Before discussing our progress on these two issues, it is beneficial to

point out a fundamental computational difficulty that one encounters when deal-

ing with the full three dimensional Green's function (for the wave equation)

with one random coordinate. To accomplish this, let us consider a very simple

random problem, namely that of a randomly positioned point source radiating in

free space. Let the particle be positioned at the point (xyz o ) with z

being random and having a probability density fun't.loa p(zo ) . Thle :iclar

field at the point (x,y,z) is given by the three dimensional scalar Green's

15



3.0 SURFACE MULTIPLE SCATTERING EFFECTS

3.1 Background

The method we have chosen to account for the effects of a layer of foliage

upon a rough surface is admittedly approximate. However, it also provides an

indication of when our approximations begin to breakdown provided we know,

individually, the scattering from the foliage and the rough surface. That is,

we must have theories and/or models for scattering from rough surfaces and a

slab of foliage which we know are accurate. As noted in Chapter 2, we are still

studying the foliage scattering problem to see how far we can go before we are

forced to make simplifying approximations to render the problem tractable.

However, because of the relatively small volume fraction of a typical foliage

covering [Brown and Curry, 1980], we should be able to develop reasonably accu-

rate models for the scattering from a slab of vegetation. The rough surface

scattering aspect of the total problem is somewhat more difficult. That is,

because of the type of terrain, frequencies, and angles of incidence involved,

single scattering theories may not be adequate in general. However, most

theories or models for scattering from rough surfaces are limited to single

scattering.

Our previous analysis efforts for the rough surface scattering problem

have been directed toward two major goals. First, we wanted to determine if

the inclusion of multiple scattering presented a fundamental difficulty or one

more related to computational complexity. That is, are we limited in our abil-

ity to derive basic relationships for the moments of the scattered field or is

the inclusion of multiple scattering difficult simply because the computations

are hard to accomplish? Our second goal was to develop an approach to the prob-

lem which was computationally tractable.

We successfully achieved our first rough surface scattering goal through

14
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scattering between particles having differing size, shape, and orientation

parameters. We are presently trying to understand the limitations of this

approximation.

We are also studying the implications of the dishonest approximation in

which the average of the product of two random functions is set equal to the

product of the averages of the functions. When we apply this approximation

to the coupled integral equations for exponentially weighted current, we

obtain a result which does not correspond to the same result we obtain with

the first order smoothing approximation. Fortunately, we have been able to

understand why this is so. That is, we can show that the dishonent approxi-

mation corresponds to shrinking the thickness of the slab to the point where

the slab contains only a single layer of particles. Thus, the dishonest

approximation accounts for "side ways" multiple scattering between particles

but not any "forward" or "back" multiple scattering.

2.4 Future Work

In the previous sections we have attempted to explain our rationale for

our particular approach to estimating the effects of a foliage covering on a

randomly rough surface. Although our approach is justified primarily by the

range of physical and electrical parameters typical for vegetation cover, we

find that we cannot completely use the type of weak multiple scattering results
3

that have previously been used to describe the scattering from a vegetation

slab in free space. In trying to maintain a degree of rigor in our analysis

of the foliage effects, we find the problem to be significantly complicated.
I

Our future efforts will therefore be directed toward simplifying our analysis

through the use of approximations whose ramifications are reasonably well under-

stood. Hopefully, we can do this and still maintain a meaningful degree of

multiple scattering in our analysis.

13
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positioned particles in terms of the current inside each particle. We multi-

ply this equation by an exponential factor which depends upon the position of

the particle in question. The product of this exponential factor and the cur-

rent forms the integrand of the expression for the scattered field due to each

particle. Thus, if we can determine the mean and variance of this product,

we can determine the mean and variance of the scattered field due to all parti-

cles. By letting the point of observation move inside each particle, we obtain

N coupled integral equations for the current in each of the N particles.

These integral equations are of the second kind ( Ei being the source field)

and are thus amenable to the method of smoothing. Unlike the surface prob-

lem (see Chapter 3), the method of smoothing results in an integral equation

for the average of the product of the current and the exponential factor

rather than an algebraic result. Our present efforts are being directed toward

solving the coupled integral equations without the use of the weak multiple

scattering approximation, i.e., no correlation between particles.

In order to solve these coupled integral equations, even in the first

order approximation, it will be necessary to introduce some simplifying ap-

proximations. Our present efforts are directed toward understanding the ram-

ifications of any approximations we invoke. For example, one of the most dif-

ficult of all problems is accounting for the random size, shape, and orienta-

tion of the particles comprising the random media. This is a very important

element in accounting for multiple scattering between particles. Our inves-

tigation of previous efforts which claim to account for multiple scattering

in the presence of random particle size, shape, and orientation has shown that

the results are very approximate. In particular, the results are only valid

when the entire ensemble of particles assumes, in unision, a specific shape,

size, or orientation. This is clearly not the same as accounting for multiple

12



of the foliage. The results in Chapter 3 can be used to compute <E > and
~s

Var(E i) by replacing the "source" term by (2.7) and treating all averages
s
s

as conditional averages with the foliage random parameters held constant; an

additional averaging over the random foliage parameters is then necessary.

Because of the assumed independence of the surface and foliage, the final aver-

age carries through in a straightforward manner.

We can use weak multiple scatter theory to estimate <E > and Var(E()

ss
Sf 5f

and such knowledge will also be adequate for computing <Es and Var(E:1 )
s f

However, these moments are not, in general, sufficient to compute the variance

of E . This is because, in the backscattering direction, there is a potential
sf

for enhancement of the backscattered power due to both the incident and back-

scattered waves traveling through a highly correlated region of foliage [DeWolf,

1971]. Since weak multiple scatter theory ignores any correlations, it can

never predict an enhancement in the backscatter direction. Clearly, we would

like to be able to ignore this effect and simply use weak multiple scatter

theory to compute Var(E ) ; however, there are problems with such an approach.
Sf

First, the theory developed by DeWolf [1971] applies to continuous random media

and, in fact, we have no theory for this effect in discrete random media even

though recent measurements have confirmed its existence [Private Communications,

A. Ishimaru]. This means that we really have no idea as to the range of media 0

parameters which can give rise to the phenomena. Consequently, we have di-

rected our efforts to describing the scattering from the foliage using methods

which include some correlation between particles. |

The approach that we are investigating is the method of smoothing; how-

ever, we are using it in a manner that has apparently never been done before.

First, we set up the equations for the field scattered by all of the randomly

11. . . .-. . . ...
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this complication, we shall use planar surfaces to bound the foliage layer

with the thickness d representing some average thickness. This approxima-

tion is reasonable for a sparse concentration of scatterers but it is woefully

inadequate for a dense population of scatterers because then the shape of the

enclosing volume becomes very important. One other point about our slab approxi-

mation is that we should be very suspicious of any results which are sen-

sitive functions of the boundary shape. For example, if in the analysis of the

part of the problem given in Figure la we find a specularly reflected average

field, we know that such a field cannot exist except possibly when the layer

thickness is small compared to a wavelength. That is, since the specularly

reflected field is a direct consequence of the planar slab boundaries which,

in turn, are clearly artificial, we know that a specularly reflected field

cannot truly exist.

According to Figure 1, we now have three simplified problems to solve

rather than one very complex problem. Because of the interaction or coupling

between these problems, we must be able to compute a mean value and a (zero

mean) fluctuating part for each field component in (2.3) before we can com-

pute the desired quantities in (2.5) and (2.6). The contribution from the

surface is discussed in Chapter 3 and our analysis is based upon the method of

smoothing. It must be remembered, however, that the "source" appearing in

Chapter 3 as 2N x H. should be replaced by

sf

where H is the free space incident magnetic field and H is the mag-
s

f

netic field scattered by the foliage when illuminated by Hi . The inclusion

of the H 1) field accounts for the "first time through" scattering effects

f

10
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+ in the same direction; such a computation would certainly indi-

cate when + E(i) is no longer the dominant field incident on the rough
i Sf

surface. This observation shows what we feel t(- e one of the major attri-

butes of this approach, e.g., by a simple comparison of terms we can estimate

when the approximations are no longer valid.

*2.3 Analysis

The quantities of primary interest to us are the mean and variance of the

scattered field which, according to (2.3), are as follows;

<Es > = <E()s (E ) > + <E (E l)>s s + <E(1(Eis + E(1)>s (2.5)

s 5 i 5 S 5 1 Sff f 5s 25

Var(E ) = I 2 (2.6)

The physical source of each of the field components is shown in Figure 1.

-*(l)-*.
E (i is the field transmitted through the foliage when illuminated by Eisf1

E(i) is the field scattered by the rough surface when illuminated by
s

s

4+ -*(l) -*(2)
E + E f and E is the field transmitted through the foliage slab when

s

illuminated by E from below. It should be noted that we have chosen tos
s

represent the foliage as enclosed in a slab of thickness d ; this point

requires some further discussion. Clearly, for any realization of the foli-

age, the enclosing boundaries at the top and bottom will not necessarily be

planar. This is obvious because the lower boundary of the foliage is, in fact,

the rough surface. Thus, from a strictly rigorous point of view, the upper

and lower planar slab surfaces should be replaced by randomly rough surfaces.

However, this would then require us to take the volume between the two random

surfaces to also be random and this would greatly complicate matters. To avoid

8



(b) the first order field scattered from the surface (E()) is due to both

the free space incidence field and the first order field scattered by the foli-

age, and (c) the second order field scattered from the foliage is due to the

first order field scattered by the surface. It should be noted that the pres-

ence of the surface forces us to consider a second order field scattered by

the foliage in order to properly account for the two-way passage of energy

through the foliage. Furthermore, if the foliage becomes a perfectly conduct-

ing or absorbing slab, then

sf - E= (2.4)

so that the net field incident upon the surface is zero.

In writing (2.2) we are assuming that it is not necessary to account for

more than second order foliage scattering effects or first order surface inter-

actions with the foliage. Physical principles dictate that this approximation

should be valid when the dominant mechanism within the foliage is absorption

rather than scattering. Fortunately, the results presented by Brown & Curry

[1980] indicate that this is the case for the frequencies of interest to this

study. We should also note, however, that the approximation in (2.3) will

also be valid whenever the foliage constituents are strong forward scatterers

for then we would expect the interaction of E(2)with the surface (to produce

E(2 ) to be very small. In summary, because of the highly absorptive nature
ss

of foliage at low frequencies [Brown & Curry, 1980] and the large size of

foliage constituents at high frequencies, we expect that (2.2) will be a rea-

sonable approximation over a frequency range that is somewhat larger than one

might at first suspect. The accuracy of this statement can be checked by

simply comparing the magnitude of E(2) in the direction of the surface to
Sf

7
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Equation (3.6) is now the appropriate point to apply the asymptotics.

Interestingly enough, the Ac-integration is determined in large by the magnitude

of the height variance < 2> while the Ar -integration is governed by the nor-
t

malized correlation function p(Art) . For Gaussian distributed heights and

slopes, we have found that p(Ar,Ak;Ar t) is dominated in its A?,-dependence by

a term that is as follows;

1exp [-(A) 2/4<,2>(i-0(

which readily lends itself to an asymptotic evaluation of the A?-integration

2for both small and large height variance < > . Clearly, in the limit of

small height variance (3.7) behaves like a delta function so (3.6) becomes

S(0,Ar)P(0,Ak;Art)exp(ji "Ar )dAr (3.8)

<r2> +o t t t t t t

2In the case where < > is large, we can ignore the exponential term in (3.7)

because it is very slowly varying with AC except where Art =AC =0 ; however,

this point is excluded from the integration because the surface integral in the

magnetic field integral equation is of the principal value type. Furthermore,

it can be shown that the residual dependence of p upon AC , once (3.7) is

removed, is simply

exp[jAC(k+ki )/2]

z

Thus, in the limit of large height variance (3.6) can be approximated as follows;

lim LPGfi =exp(-jk .r t )2 tAt [ . . 2
S2 oot (xp[jA(k+k )/2 -(Ar )2/4<2 (l-0

exp(jki .Ar) dAr t  (3.9)
t
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where

Art) = j (A,Art)exp[JA( +k i )/2] dA

We should point out that the factor in the curly bracket in (3.9) may contain

2 2 -1/2
a dependence on <C> other than the simple [27r<1 >(-)] -  suggested by

(3.7). However, this dependence varies very slowly with Art so its variation
t

need not be considered in doing the Ar t-integration.

Equations (3.8) and (3.9) represent the small and large height variance

limits for LPGf The Ar t-integrations in (3.8) and (3.9) are governed by

the support of the normalized correlation function and its first derivatives

or, more explicitly, the correlation length of the surface roughness. Asym-

ptotic evaluation of the integrations for large and small correlation length

is not as straightforward as the height variance case. For example, we can

consider the limit where the correlation length is much smaller than electro-

magnetic wavelength only if we let the height variance also be small [Ch. 3,

Brown, 1984a]. To date, we have not found a suitable asymptotic method to

evaluate (3.8) and (3.9). However, the integrals in these equations can cer-

tainly be evaluated by numerical means and this is presently under study.

N iWhen we have to consider N > 0 in the expression LPG[LG]Nf , there is

clearly an increase in complexity because there are N +2 random heights and

N +2 random slopes to be averaged over. However, if we consider only N =1

then we feel that it should at least be possible to asymptotically evaluate

the height integrations. It is essential that we evaluate the N=1 term

because we need to know when it is comparable to or exceeds the N = 0 term;

this is a good indication that the retention of only the N =0 and N =1 terms

is inadequate.
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3.3 Convergence of the Method of Smoothing

The method of smoothing provides a series solution for the average scat-

tered field0 in terms of successively higher orders of interaction or multiple

scattering on the surface. Instead of performing a term by term average of an

iterative solution of the basic integral equation, i.e., the magnetic field

integral equation in our case, the method of smoothing iteratively solves for

the fluctuating scattered field and uses this result to develop an expression

for the average scattered field. The basic logic behind the method of smoothing

is that if the fluctuating field is sufficiently small that only a few number

of terms in its iterative solution are required then these few terms will be

entirely adequate for the average scattered field. While this logic is reason-

able, it does not overcome the need for a rigorous proof for convergence of the

resulting series. To our knowledge, no one has ever demonstrated the conver-

gence of the method of smoothing and our work is no exception. We have devoted

a great deal of time to trying to establish the conditions under which the

method of smoothing converges but to no avail. The primary difficulty is the

nearly impossible task of estimating the relative magnitude of successively

higher order terms. While this is certainly an interesting and challenging

research task, we do not feel that it is suitable to an applications oriented

project such as this. Consequently, we do not anticipate spending any further

time and effort on the general convergence issue.

Fortunately, we have been able to demonstrate the advantages of the method

of smoothing relative to the standard iterative approach to solving the magnetic

field integral equation. This topic is discussed in detail in [Brown, 1984b]

and so we will only briefly review the major highlights. For an integral

Olt should be noted that this result can also be used to find the incoherent
scattered power [Ch. 4, Brown, 1984a].
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* equation of the second kind, such as the magnetic field integral equation,

having the following form;

if = f + LGf (3.10)

the standard iterative solution is given by

ni
f = [LG]n fi (3.11)

n=o

The average of this result yields

<f>= P [LG)n fi (3.12)

n=o

where P denotes the averaging operator, i.e., P = <.> . The problem with (3.12)

is that it involves an infinite number of interactions between both average terms

and zero mean fluctuating terms. That is, even if the fluctuating part of f

is very small, (3.12) still comprises an infinite series of interacting average

terms. The method of smoothing overcomes this problem by summing all of the

interactions between average terms; that is, it the fluctuating part of f is

vanishingly small, the method of smoothing yields an exact, closed form result

for <f> . The method of smoothing does this in the following very clever

manner. It recognizes that in iteratively solving for f as in (3.11), one is

iterating on both the average value of f and its zero mean fluctuating part

and this causes problems even when the fluctuating part of f is small because

one is left with an infinite series even when the fluctuating part of f is very

small. To overcome this, the method of smoothing iteratively solves for the

fluctuating part of f only. This result is self consistently used to solve for

<f> in a non-iterative fashion. Now, since the only infinite series in the

solution for <f> results from the iterative series for the fluctuating part

24
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of f, one obtains a closed form solution for <f> when the fluctuating part

of f (and its series solution) shrinks to zero. This is the real advantage of S

the method of smoothing relative to a standard iterative solution. Unfortun-

ately, it is not always obvious when the fluctuating part of f is sufficiently -.

imall and this is why it is difficult, in general, to establish the range of

parameter variation for which the resulting series converges.

3.4 Future Work

Since the major thrust of our research is to be directed toward the foliage

effects problem, our .;urface scattering research will necessarily be reduced.

However, we do plan to continue on with the asymptotic evaluation of the terms

in the method of smoothing series. In particular, we hope to be able to accomplish

all of the random variable integrations and, thus, to reduce the required inte-

grations to ones over the differences in the transverse spatial coordinates -

such as Ar in (3.8) and (3.9). We then plan to conLinue investigating appro-
t

priate approximations for the normalized surface height correlation function

which enable us to asymptotically evaluate these integrals (without simply

yielding more or less trivial results). If we are successful in this research,

we feel that we should be able to make some definitive statements in regard to

the convergence of the method of smoothing series at least in these asymptotic

limits.

As we have noted previously in this report, we feel that the method of

smoothing series has a much greater potential for providing an immediate answer

to the random surface scattering problem. Consequently, we do not plan to

pursue the stochastic Fourier transform approach during this present effort.

We feel that further study of this approach is best left to future dedicated

efforts.
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